PART 'A'

- A pyramid shaped toy is made by tightly placing cubic blocks of $1 \times 1 \times 1$ cm³. The base of the toy is a square 4×4 cm². The width of each step is 0.5 cm. How many blocks are required to make the toy?
 - 1. 30
- 34
- 3. 36
- 40
- Of three persons A, B and C, one always lies while the others always speak the truth. C asked A, "Do you always speak the truth, yes or no?" He said something that C could not hear. So, C asked B, "what did A say?"

B replied, "A said No".

So, who is the liar?

- 2. B
- C 3.
- 4. cannot be determined
- Two plane mirrors facing each other are of images of the point is
- 2.

- 5. Consider 3 parallel strips of 10 m width running around the Earth, parallel to the equator; A1 at the Equator, A2 at the Tropic of Cancer and A3 at the Arctic Crcle. The order of the areas of the strips is
 - 1. A₁<A₂< A₃
- A1=A2> A3
- 3. $A_1 > A_2 = A_3$
- $A_1 > A_2 > A_3$
- A 3 m long our goes past a 4 m long truck at rest on the road. The speed of the car is 7 m/s. The time taken to go past is
 - 1. $4/7 \, s$
- 1 s
- 3. 7/4 s
- 10/7 s
- Let m and n be two positive integers such that

m+n+mn=118

Then the value of m + n is

- 1. not uniquely determined
- 2. 18
- 3. 20
- 4. 22

- kept at 60° to each other. A point is located on the angle bisector. The number
- 1. 6
- 3
- 4. Infinite

- I bought a shirt at 10% discount and sold it to a friend at a loss of 10%. If the friend paid me Rs. 729.00 for the shirt, what was the undiscounted price of the shirt?
 - Rs. 900
- Rs. 800
- 3. Rs. 1000
- Rs. 911.25

What is angle x in the schematic diagram given below?

- 1. 60
- 50
- 3. 40
- 30

- Suppose
 - (1) x = 4
 - (2) Then $x 4 = x^2 4^2$ (as both sides are zero)
 - (3) Therefore (x-4) = (x-4)(x+4)Cancelling (x - 4) from both sides
 - (4)1 = (x+4)
 - (5) Then x = -3

Which is the wrong step?

- 1. 1 to 2
- 2. 2 to 3
- 3. 3 to 4
- 4. 4 to 5

- 10. From a group of 40 players, a cricket team of 11 players is chosen. Then, one of the eleven is chosen as the captain of the team. The total number of ways this can be done
 - below means the number of ways n objects can be chosen from m objects]

- Information in DNA is in the form of sequence of 4 bases namely A, T, G and C. The proportion of G is the same as that of C, and that of A is the same as that of T. Which of the following strands of DNA will potentially have maximum diversity (i.e., maximum nformation content per base)?
 - length 1000 bases with 10% G
 - length 2000 bases with 10% A
 - length 2000 bases with 40% T
 - length 1000 bases with 25% C

Based on the graph, which of the following statements is NOT true?

- 1. Number of gold medals increased whenever total number of medals increased
- Percentage increase in gold medals in 2010 over 2006 is more than he corresponding increase in total medals
- Every time non-gold medals together account for more than 50% of the total medals
- Percentage increase in gold medals in 2010 over 2006 is more than the corres ponding increase in 2002 over 1998
- How many non-negative integersless than 10,000 are there such that the sum of the digits of the number is divisible by three?
 - 1. 1112
- 2. 2213
- 3. 2223
- 3334
- In each of the following groups of words is a hidden number, based on which you should arrange them in ascending order. Pick the right answer:
 - A. Tinsel event
 - B. Man in England
 - C. Good height
 - D. Last encounter
 - 1. A, B, C, D
- C. B. D. A.
- A, C, D, B
- C, D. B, A
- Starting from a point A you fly one mile south, then one mile east, then one mile north which brings you back to point A. Point A is NOT the north pole. Which of the following MUST be true?
 - 1. You are in the Northern Hemisphere
 - You are in the Eastern Hemisphere
 - You are in the Western Hemisphere
 - 4. You are in the Southern Hemisphere

Phone: 8113887329, 8075791772 Email: cmscsirnet@gmail.com

CMS CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

+919447247329

5

- 16. A single celled spherical organism contains 70% water by volume. If it loses 10% of its water content, how much would its surface area change by approximately?
 - 1. 3%

2. 5%

3. 6%

- 4. 7%
- 17 Jar W contains 40 white marbles and jar 3 contains 40 black marbles. Ten black marbles from B are transferred to W and mixed thoroughly. Now, ten randomly selected marbles from W are put back in Jar B to make 40 marbles in each jar. The number of black marbles in W
 - would be equal to the number of white marbles in B
 - would be more than the number of white marbles in B
 - would be less than the number of white marbles in B
 - cannot be determined from the information given

19. If

 $aN \Rightarrow S$ $cF \Rightarrow I$

 $gH \Rightarrow M$

then $nS \Rightarrow ?$

1. T

2 A

3. 1

4.

20. AB is the diameter of a circle. The chord CD is perpendicular to AB intersecting it at P. If CP = 2 and PB =1, the radius of the circle is

1. 1

2. 2.5 4. 5

18.

Two ants, initially at diametrically opposite points A and B on a circular ring of radius R, start crawling towards each other. The speed of the one at A is half of that of the one at B. The point at which they meet is at a straight line distance of

- 1. R from A
- 2. $\frac{3R}{2}$ from A
- 3. R from B
- 4. $\frac{3R}{2}$ from B

NET&ISS

VCE 2008

PYQ June 2015 - 3

PART 'B'

UNIT - 1

Given a 4×4 real matrix A, let $T: \mathbb{R}^4$ R4 be the linear transformation defined by $T\nu - A\nu$, where we think of \mathbb{R}^4 as the set of real 4 × 1 matrices. For which choices of A given below, do Image(T) and $Image(T^2)$ have respective dimensions 2 and 1? (* denotes a nonzero entry)

The sum of the series 22.

$$\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \cdots$$
 equals

1.

- 3.

23. Which of the following is a inear transformation from R3 to R2?

a.
$$f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x+y \end{pmatrix}$$

b.
$$g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$$

c.
$$h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z - x \\ x + y \end{pmatrix}$$

- only f.
- only g.
- only h.
- all the transformations f, g and h.

Let T be a 4×4 real matrix such that $T^4 = 0$. Let $k_i := \dim Fer T^i$ $1 \le i \le 4$. Which of the following is NOT a possibility for the sequence $k_1 \le k_2 \le k_3 \le k_4$?

- $3 \le 4 \le 4 \le 4.$
- $2. 1 \le 3 \le 4 \le 4.$
- 3. $2 \le 4 \le 4 \le 4$.
- 4. $2 \le 3 \le 4 \le 4$.

The limit 25.

$$\lim_{x\to 0} \frac{1}{x} \int_{x}^{2x} e^{-t^2} dt$$

- does not exist.
- is infinite.
- exists and equals 1,
- exists and equals 0.

Let A, B be $n \times n$ matrices. Which of the following equals trace(A^2B^2)?

- $(trace(AB))^2$
- $trace(AB^2A)$
- 3. $trace((AB)^2)$
- trace(BABA)

Let A be an $m \times n$ matrix of rank n with real entries. Choose the correct statement.

- Ax = b has a solution for any b.
- Ax = 0 does not have asolution.
- If Ax = b has a solutior, then it is unique.
- y'A = 0 for some nonzero y, where y' denotes the transpose of the vector y.

CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

Let V be the space of twice differentiable functions on R satisfying

 $f^{\prime\prime}-2f^{\prime}+f=0.$

Define $T: V \to \mathbb{R}^2$ by T(f) = (f'(0), f(0)).

Then T is

1. one-to-one and onto.

- 2. one-to-one but not onto.
- 3. onto but not one-to-one.
- 4. neither one-to-one nor onto.
- 29. Which of the following subsets of \mathbb{R}^n is compact (with respect to the usual topology of \mathbb{R}^n)?
 - 1. $\{(x_1, x_2, ..., x_n): |x_i| < 1, 1 \le i \le n\}$
 - 2. $\{(x_1, x_2, ..., x_n): x_1 + x_2 + \cdots + x_n = 0\}$
 - 3. $\{(x_1, x_2, ..., x_n): x_i \ge 0, 1 \le i \le n\}$
 - 4. $\{(x_1, x_2, ..., x_n): 1 \le x_i \le 2^i, 1 \le i \le n\}$
- 30. Let $f: X \to X$ such that

f(f(x)) = x for all $x \in X$. Then

- 1. f is one-to-one and onto.
- 2. f is one-to-one, but not onto.
- 3. f is onto but not one-to-one.
- 4. f need not be either one-to-one or onto.
- A polynomial of odd degree with real coefficients must have
 - 1. at least one real root.
 - 2. no real root.
 - 3. only real roots.
 - 4. at least one root which is not real.
- 32. The row space of a 20×50 matrix A has dimension 13. What is the dimension of the space of solutions of Ax = 0?
 - 1. 7

- 2. 13
- 3. 33
- 4. 37

UNIT - 2

33. Let, for each $n \ge 1$, C_n be the open disc in \mathbb{R}^2 , with centre at the point (n,0) and radius equal to n. Then

$$C = \bigcup C_n$$
 is

- 1. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|< x\}.$
- 2. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|<2x\}$.
- 3. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|<3x\}$.
- 4. $\{(x,y)\in\mathbb{R}^2: x>0\}.$

$$\int_{|z+1|=2} \frac{z^2}{4-z^2} dz =$$

- 1. 0. 2. -2
- 2πi.
- 4. 1.
- 35. Let f be a real valued harmonic function on C, that is, f satisfies the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$ Define the functions

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}$$
$$h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

Then

- g and h are both holomorphic functions.
- 2. g is holomorphic, but h need not be holomorphic.
- 3. h is holomorphic, but g need not be holomorphic.
- both g and h are identically equal to the zero function.

+919447247329

8

36. Let *D* be the set of tuples $(w_1, ..., w_{10})$, where $w_i \in \{1,2,3\}$, $1 \le i \le 10$ and $w_i + w_{i+1}$ is an even number for each *i* with $1 \le i \le 9$.

Then the number of elements in D is

- 1. $2^{11} + 1$
- $2. 2^{10} + 1$
- $3. 3^{10} + 1.$
- 4. $3^{11} + 1$.
- 37. Let R be the ring $\mathbb{Z}[x]/((x^2 + x + 1)(x^3 + x + 1))$ and I be the deal generated by 2 in R. What is the cardinality of the ring R?
 - 1. 27.
- 2 32
- 3, 64,
- 4. Infinite.
- 38. Up to isomorphism, the number of abelian groups of order 108 is:
 - 1. 12.
- 2. 9.
- 3. 6.
- 4. 5.
- 39. The number of subfields of a field of cardinality 2¹⁰⁰ is
 - 1. 2.
- 2. 4.
- 3. 9.
- 4. 100.
- 40. How many elements does the set

 $\{z \in \mathbb{C} \mid z^{60} = -1, z^k \neq -1 \text{ for } 0 < k < 60\} \text{ have?}$

- 1. 24.
- 2. 30.
- 3. 32.
- 4. 45

UNIT - 3

41. The integral equation

 $y(x) = \lambda \int_0^1 (3x - 2)t \ y(t) dt$, with λ as a parameter, has

- 1. only one characteristic number
- 2. two characteristic numbers
- 3. more than two characteristic numbers
- 4. no characteristic number

42. Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial of the form $f(x) = a_0 + a_1 x + a_2 x^2$ with $a_0, a_1, a_2 \in \mathbb{R}$ and $a_2 \neq 0$. If

 $E_1 = \int_{-1}^{1} f(x)dx - [f(-1) + f(1)]$

 $E_2 = \int_{-1}^{1} f(x) dx - \frac{1}{2} (f(-1) + 2f(0) + f(1))$

and |x| is the absolute value of $x \in \mathbb{R}$, then

- 1. $|E_1| < |E_2|$
- 2. $|E_1| = 2|E_2|$
- 3. $|E_1| = 4|E_2|$
- 4. $|E_1| = 8|E_2|$
- 43. Let y(x) be a continuous solution of the initial value problem

 $y' + 2y = f(x), \quad y(0) = 0,$

where $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$

Then $y\left(\frac{3}{2}\right)$ is equal to

- $1. \quad \frac{\sinh{(1)}}{2}$
- 2. cosh (1)
- $3. \frac{\sinh{(1)}}{e^2}$
- $4. \quad \frac{\cosh{(1)}}{e^2}$
- 44. Let $a, b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then the Cauchy problem

 $a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} = 1; \ x, y \in \mathbb{R}$

u(x, y) = x on ax + by = 1

- has more than one solution if either a or b is zero
- 2. has no solution
 - 3. has a unique solution
- 4. has infinitely many solutions
- 45. The singular integral of the ODE $(xy'-y)^2 = x^2(x^2-y^2)$ is
 - 1. $y = x \sin x$
 - $2. \quad y = x \sin(x + \frac{\pi}{4})$
 - $3. \quad y=x$
 - $4. \quad y = x + \frac{1}{2}$

46. The initial value problem

$$y' = 2\sqrt{y}, \ y(0) = a, \text{ has}$$

- 1. a unique solution if a < 0
- 2. no solution if a > 0
- 3. infinitely many solutions if a = 0
- 4. a unique solution if $a \ge 0$
- 47. Consider two weightless, inextensible rols
 AB and BC, suspended at A and joined by
 a flexible joint at B. Then the degrees of
 freedom of the system is
 - 1. 3

2. 4

3.

- 4. 6
- 48. Consider the initial value problem $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0, \quad u(0, y) = 4e^{-2y}.$ Then the value of u(1, 1) is
 - 1. $4e^{-2}$
- 2. 4e²
- 3. $2e^{-4}$
- 4. 4e4

UNIT - 4

- 49. Suppose X_n , X are random variables such that X_n converges in distribution to X and $(-1)^n X_n$ also converges in distribution to X. Then
 - 1. X must have a symmetric distribution.
 - 2. X must be 0.
 - 3. X must have a density.
 - 4. X² must be a constant.
- 50. Ten balls are put in 6 slots at random. Then the expected total number of balls in the two extreme slots is
 - 1. 10/6.
- 2. 10/3.
- 3. 1/6.
- 4. 6/10.

- 51. Assume that $X \sim \text{Binomial } (n, p)$ for some $n \geq 1$ and $0 and <math>Y \sim \text{Poisson } (\lambda)$ for some $\lambda > 0$. Suppose E[X] = E[Y]. Then
 - $1. \quad Var(X) = Var(Y)$
 - $2. \quad Var(X) < Var(Y)$
 - 3. Var(Y) < Var(X)
 - 4. Var(X) may be larger or smaller than Var(Y) depending on the values of n, p and λ .
 - 52. Suppose $X_i \mid \theta_i \sim N(\theta_i, \sigma^2)$, i = 1,2 are independently distributed. Under the prior distribution, θ_1 and θ_2 are i.i.d $N(\mu, \tau^2)$, where σ^2 , μ and τ^2 are known. Then which of the following is true about the marginal distributions of X_1 and X_2 ?
 - 1. X_1 and X_2 are i.i.d $N(\mu, \tau^2 + \sigma^2)$.
 - X₁ and X₂ are not normally distributed.
 - 3. X_1 and X_2 are $N(\mu, \tau^2 + \sigma^2)$ but they are not independent.
 - X₁ and X₂ are normally distributed but are not identically distributed.
- 53. $\{N(t): t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Let $X_n = N(n)$, n = 0,1,2,... Which of the following is correct?
 - 1. $\{X_n\}$ is a transient Markov chain.
 - 2. $\{X_n\}$ is a recurrent Markov chain, but has no stationary distribution.
 - 3. $\{X_n\}$ has a stationary distribution.
 - 4. $\{X_n\}$ is an irreducible Markov chain.
- 54. Let X_1, X_2, \dots, X_n be independent and identically distributed random variables having an exponential distribution with mean $\frac{1}{2}$.

Let $S_n = X_1 + X_2 + \cdots + X_n$ and N =

 $\inf \{n \ge 1: S_n > 1\}$. Then Var(N) equals

1. 1

- 2. λ .
- 3. λ^2 .
- 4 m

CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

55. Suppose there are k strata of l = kM units each with size M. Draw a sample of size n_i with replacement from the i^{th} stratum and denote by \bar{y}_i the sample mean of the study variable selected in the i^{th} stratum, $i = 1, 2, \dots, k$. Define

$$\vec{y}_s = \frac{1}{k} \sum_{i=1}^k \vec{y}_i$$
 and $\vec{y}_w = \frac{\sum_{i=1}^k i_i \vec{y}_i}{n}$

Which of the following is necessarily true?

- 1. \bar{y}_s is unbiased but \bar{y}_w is not unbiased for the population mean.
- 2. \bar{y}_s is not unbiased but \bar{y}_w is unbiased for the population mean.
- 3. Both \bar{y}_s and \bar{y}_w are unbased for the population mean.
- 4. Neither \bar{y}_s nor \bar{y}_w is unliased for the population mean.
- 56. Let X, Y be independent random variables and let $Z = \frac{X-Y}{2} + 3$. If X has characteristic function φ and Y has characteristic function ψ , then Z has characteristic function θ where
 - 1. $\theta(t) = e^{-i3t}\varphi(2t)\psi(-2t)$
 - 2. $\theta(t) = e^{i3t} \varphi\left(\frac{t}{2}\right) \psi\left(-\frac{t}{2}\right)$
 - 3. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{t}{2}\right)$
 - 4. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{-t}{2}\right)$
- 57. Consider the model $Y_i = i\beta + \epsilon_i$, i = 1,2,3 where ϵ_1 , ϵ_2 , ϵ_3 are independent with mean 0 and variance σ^2 , $2\sigma^2$, $3\sigma^2$ respectively. Which of the following is the best linear unbiased estimate of β ?
 - 1. $\frac{y_1+2y_2+3y_3}{6}$
 - $2. \quad \frac{6}{11} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} \right).$
 - 3. $\frac{y_1+y_2+y_3}{6}$
 - 4. $\frac{3y_1+2y_2+y_3}{10}$

- 58. Consider a Balanced Incomplete Block Design (BIBD) with parameters (b, k, v, r, λ). Which of the following cannot possibly be the parameters of a BIBD?
 - 1. $(b-1,k-\lambda,b-k,k,\lambda)$.
 - 2. $(b, v k, v, b r, b 2r + \lambda)$
 - 3. $\left(\frac{v(v-1)}{2}, 2, v, v-1, 1\right)$.
 - 4. $(k, b, r, v, \lambda 1)$.
- 59. Let X₁, X₂, ··· , X₇ be a random sample from N(μ, σ²) where μ and σ² are unknown. Consider the problem of testing H₀: μ = 2 against H₁: μ > 2. Suppose the observed values of x₁, x₂, ··· , x₇ are 1.2, 1.3, 1.7, 1.8, 2.1, 2.3, 2.7. If we use the Uniformly Most Powerful test, which of the following is true?
 - H₀ is accepted both at 5% and 1% levels of significance.
 - H₀ is rejected both at 5% and 1% levels of significance.
 - H₀ is rejected at 5% level of significance, but accepted at 1% level of significance.
 - H₀ is rejected at 1% level of significance, but accepted at 5% level of significance.
- 60. Let $Y = (Y_1, \dots, Y_n)'$ have the multivariate normal distribution $N_n(0, I)$. Which of the following is the covariance matrix of the conditional distribution of Y given

$$\sum_{i=1}^n Y_i?$$

(1 denotes the $n \times 1$ vector with all elements 1.)

- 1. I.
- 2. $I + \frac{11}{n}$
- 3. $I \frac{11'}{n}$.
- 4. $\frac{11'}{n}$

CMS

+919447247329

11

PART 'C'

UNIT - 1

61. Let $A = \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}$ be a 3 × 3 matrix

where a, b, c, d are integers. Then, we must have:

- 1. If $a \neq 0$, there is a polynomial $p \in \mathbb{Q}[x]$ such that p(A) is the inverse of A.
- 2. For each polynomial $q \in \mathbb{Z}[x]$, the natrix

$$q(A) = \begin{pmatrix} q(a) & q(b) & q(c) \\ 0 & q(a) & q(d) \\ 0 & 0 & q(a) \end{pmatrix}$$

- 3. If $A^n = 0$ for some positive integer n, then $A^3 = 0$.
- 4. A commutes with every matrix of the form $\begin{pmatrix} a' & 0 & c' \\ 0 & a' & 0 \end{pmatrix}$.
- 62. Let f be a bounded function on \mathbb{R} and $a \in \mathbb{R}$. For $\delta > 0$, let $\omega(a, \delta) = \sup |f(x) f(a)|$, $x \in [a \delta, a + \delta]$.

Then

- 1. $\omega(a, \delta_1) \leq \omega(a, \delta_2)$ if $\delta_1 \leq \delta_2$.
- 2. $\lim_{\delta \to 0+} \omega(a, \delta) = 0$ for all $a \in \mathbb{R}$.
- 3. $\lim_{\delta \to 0+} \omega(a, \delta)$ need not exist.
- 4. $\lim_{\delta \to 0+} \omega(a, \delta) = 0$ if and only if f is continuous at a.
- 63. Let S be the set of 3×3 real matrices A with $A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then the set S contains
 - 1. a nilpotent matrix.
 - 2. a matrix of rank one.

- 3. a matrix of rank two.
- 4. a non-zero skew-symmetric matrix.
- 64. Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1: V_1 \rightarrow V_2, \ \phi_2: V_2 \rightarrow V_3, \ \phi_3: V_3 \rightarrow V_4$ such that Ker $(\phi_1) = \{0\}$, Range $(\phi_1) = \text{Ker } (\phi_2)$, Range $(\phi_2) = \text{Ker } (\phi_3)$, Range $(\phi_3) = V_4$. Then
 - 1. $\sum_{i=1}^{4} (-1)^{i} \dim V_{i} = 0$
 - 2. $\sum_{i=2}^{\infty} (-1)^i \dim V_i > 0.$
 - 3. $\sum_{\substack{i=1\\4}}^{4} (-1)^i \dim V_i < 0.$
 - 4. $\sum_{i=1}^{\infty} (-1)^i \dim V_i \neq 0$
- 65. For $n \ge 1$, let $g_n(x) = \sin^2\left(x + \frac{1}{n}\right), x \in [0, \infty) \text{ and}$ $f_n(x) = \int_0^x g_n(t) dt. \text{ Then}$
 - 1. $\{f_n\}$ converges pointwise to a function f on $[0, \infty)$, but does not converge uniformly on $[0, \infty)$.
 - 2. $\{f_n\}$ does not converge pointwise to any function on $[0, \infty)$.
 - 3. $\{f_n\}$ converges uniformly on [0,1].
 - 4. $\{f_n\}$ converges uniformly on $[0, \infty)$.
- 66. Let $S: \mathbb{R}^n \to \mathbb{R}^n$ be given by $S(\nu) = \alpha \nu$ for a fixed $\alpha \in \mathbb{R}$, $\alpha \neq 0$.

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $B = \{\nu_1, ..., \nu_n\}$ is a set of linearly independent eigenvectors of T.

Then

- 1. The matrix of T with respect to B is diagonal.
- 2. The matrix of (T S) with respect to B is diagonal.

Email: cmscsirnet@gmail.com CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

+919447247329

12

- The matrix of T with respect to B is not necessarily diagonal, but is upper triangular.
- The matrix of T with respect to B is diagonal but the matrix of (T - S)with respect to B is not diagonal.
- 67. Let $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the function $F(x,y) = \langle Ax, y \rangle$, where \langle , \rangle is the standard inner product of Rn and A is a $n \times n$ real matrix. Here D denotes the total derivative. Which of the following statements are correct?
 - $(DF(x,y))(u,v) = \langle Au,y \rangle + \langle Ax,v \rangle.$
 - (DF(x,y))(0,0) = 0.
 - DF(x, y) may not exist for some $(x,y)\in\mathbb{R}^n\times\mathbb{R}^n$.
 - DF(x, y) does not exist at (x,y)=(0,0).
- Which of the following are subspaces of the vector space \mathbb{R}^3 ?
 - $\{(x, y, z): x + y = 0\}.$
 - 2. $\{(x, y, z): x y = 0\}.$
 - $\{(x,y,z): x+y=1\}.$
 - $\{(x, y, z): x y = 1\}.$
- 69. An n x n complex matrix A satisfies $A^k = I_n$, the $n \times n$ identity matrix, where k is a positive integer > 1. Suppose 1 is not an eigenvalue of A. Then which of the following statements are necessarily true?
 - 1. A is diagonalizable.
 - 2. $A + A^2 + \cdots + A^{k-1} = 0$, the $r \times n$ zero matrix.
 - 3. $tr(A) + tr(A^2) + \cdots + tr(A^{k-1}) = -4$. $A^{-1} + A^{-2} + \cdots + A^{-(k-1)} = -I_n$.
- 70. Let <u>u</u> be a real $n \times 1$ vector satisfying $\underline{u}'\underline{u} = 1$, where \underline{u}' is the transpose of \underline{u} . Define A = I - 2uu' where I is the n^{th} order identity matrix. Which of the following statements are true?

- 1. A is singular.
- $A^2 = A$.
- 3. Trace (A) = n 2.
- $A^{2} = I$.
- 1. Let a be a positive real number. Which of the following integrals are convergent?

 - 3.
- Let A be an invertible 4×4 real marix. Which of the following are NOT true?
 - 1. Rank A = 4.
 - For every vector $b \in \mathbb{R}^4$, Ax = 7 has exactly one solution.
 - $\dim (\text{nullspace } A) \geq 1.$
 - 0 is an eigenvalue of A.
- 73. Which of the following sets of functions are uncountable? (N stands for the se of natural numbers.)
 - $\{f \mid f \colon \mathbb{N} \to \{1,2\}\}$
 - $\{f|f:\{1,2\}\to N\}.$
 - $\{f | f : \{1,2\} \to \mathbb{N}, f(1) \le f(2)\}.$
 - $\{f \mid f: \mathbb{N} \to \{1,2\}, f(1) \le f(2)\}$
 - 74. For $n \ge 2$, let $a_n = \frac{1}{n \log n}$. Then
 - The sequence $\{a_n\}_{n=2}^{\infty}$ is convergent.
 - The series $\sum_{n=2}^{\infty} a_n$ is convergent. The series $\sum_{n=2}^{\infty} a_n^2$ is convergent.

 - The series $\sum_{n=2}^{\infty} (-1)^n a_n$ is convergent.
 - 75. Which of the following sets in \mathbb{R}^2 have positive Lebesgue measure? For two sets $A, B \subseteq \mathbb{R}^2, A + B$ $= \{a + b \mid a \in A, b \in B\}$

+919447247329

13

1.
$$S = \{(x, y) | x^2 + y^2 = 1\}$$

2.
$$S = \{(x, y) | x^2 + y^2 < 1\}$$

3.
$$S = \{(x,y)|x=y\} + \{(x,y)|x=-y\}$$

4.
$$S = \{(x,y)|x=y\} + \{(x,y)|x=y\}$$

- 76. Let $p_n(x) = x^n$ for $x \in \mathbb{R}$ and let $\emptyset = span\{p_0, p_1, p_2, \dots\}$. Then
 - 1. 80 is the vector space of all real valued continuous functions on R.
 - So is a subspace of all real valued continuous functions on R.
 - 3. $\{p_0, p_1, p_2, ...\}$ is a linearly independent set in the vector space of all continuous functions on \mathbb{R} .
 - 4. Trigonometric functions belong to Ø.
- 77. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that $\int_{\mathbb{R}^n} |f(x)| dx < \infty$.

Let A be a real $n \times n$ invertible matrix and for $x, y \in \mathbb{R}^n$, let (x, y) denote the standard inner product in \mathbb{R}^n . Then

$$\int_{\mathbb{R}^n} f(Ax)e^{i(y,x)}dx =$$

1.
$$\int_{\mathbb{R}^n} f(x)e^{i((A^{-1})^T y,x)} \frac{dx}{|\det A|}$$

2.
$$\int_{\mathbb{R}^n} f(x) e^{i(A^T y, \lambda)} \frac{dx}{|\det A|}$$

3.
$$\int_{\mathbb{R}^n} f(x)e^{i\langle (A^T)^{-1}y,x\rangle}dx.$$

4.
$$\int_{\mathbb{R}^n} f(x)e^{i(A^{-1}y,x)} \frac{dx}{|\det A|}$$

Let {a₀, a₁, a₂, ...} be a sequence of real numbers.

For any $k \ge 1$, let $s_n = \sum_{k=0}^n a_{2k}$. Which of the following statements are correct?

- 1. If $\lim_{n\to\infty} s_n$ exists, then $\sum_{m=0}^{\infty} a_m$ exists.
- 2. If $\lim_{n\to\infty} s_n$ exists, then $\sum_{m=0}^{\infty} c_m$ need not exist.

- 3. If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ exists.
- 4. If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ need not exist.

UNIT - 2

- Let f be an analytic function defined on the open unit disc in C. Then f is constant if
 - 1. $f\left(\frac{1}{n}\right) = 0$ for all $n \ge 1$.
 - 2. f(z) = 0 for all $|z| = \frac{1}{2}$.
 - 3. $f\left(\frac{1}{n^2}\right) = 0$ for all $n \ge 1$.
 - 4. f(z) = 0 for all $z \in (-1, 1)$.
- 80. Let f be an entire function. Which of the following statements are correct?
 - f is constant if the range of f is contained in a straight line.
 - f is constant if f has uncountably many zeros.
 - 3. f is constant if f is bounded on $\{z \in \mathbb{C} : \text{Re}(z) \leq 0\}$
 - 4. f is constant if the real part of f is bounded.
- 81. Let C([0,1]) be the ring of all real valued continuous functions on [0,1]. Which of the following statements are true?
 - 1. C([0,1]) is an integral domain.
 - The set of all functions vanishing at 0 is a maximal ideal.
 - The set of all functions vanishing at both 0 and 1 is a prime ideal.
 - 4. If $f \in C([0,1])$ is such that $(f(x))^n = 0$ for all $x \in [0,1]$ for some n > 1, then f(x) = 0 for all $x \in [0,1]$.

- 82. Let p be a polynomial in 1-complex variable. Suppose all zeroes of p are in the upper half plane $H = \{z \in \mathbb{C} \mid Im(z) > 0\}$. Then
 - 1. $lm \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{R}$.
 - 2. $Re i \frac{p'(z)}{p(z)} < 0$ for $z \in \mathbb{R}$.
 - 3. $lm \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with lm z < 0.
 - 4. $Im \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with Im z > 0.
- Which of the following primes satisfy the congruence

 $a^{24} \equiv 6a + 2 \mod 13?$

- 1. 41
- 2. 47
- 3. 67
- 4. 83
- 84. Which of the following polynomials are irreducible in the ring $\mathbb{Z}[x]$ of polynomials in one variable with integer coefficients?
 - 1. $x^2 5$.
 - 2. $1 + (x+1) + (x+1)^2 + (x+1)^3 + (x+1)^4$.
 - 3. $1+x+x^2+x^3+x^4$.
 - 4. $1+x+x^2+x^3$
- 85. Consider the set Z of integers, with the topology τ in which a subset is closed if and only if it is empty, or Z, or finite. Which of the following statements are true?
 - τ is the subspace topology induced from the usual topology on R.
 - 2. \mathbb{Z} is compact in the topology τ .
 - Z is Hausdorff in the topology τ.
 - Every infinite subset of Z is dense in the topology τ.
- 86. Let σ: {1,2,3,4,5} → {1,2,3,4,5} be a permutation (one-to-one and onto function) such that

$$\sigma^{-1}(j) \le \sigma(j) \quad \forall j, 1 \le j \le 5.$$

Then which of the following are true?

- 1. $\sigma \circ \sigma(j) = j$ for all j, $1 \le j \le 5$.
- 2. $\sigma^{-1}(j) = \sigma(j)$ for all j, $1 \le j \le 5$.
- The set {k: σ(k) ≠ k} has an even number of elements.
- The set {k: σ(k) = k} has an odd number of elements.
- 87. Determine which of the following polynomials are irreducible over the indicated rings.
 - 1. $x^5 3x^4 + 2x^3 5x + 8$ over \mathbb{R} .
 - 2. $x^3 + 2x^2 + x + 1$ over Q.
 - 3. $x^3 + 3x^2 6x + 3$ over \mathbb{Z} .
 - 4. $x^4 + x^2 + 1$ over $\mathbb{Z}/2\mathbb{Z}$.
- **88.** If x, y and z are elements of a group such that xyz = 1, then
 - $1. \quad yzx=1.$
- $2. \quad yxz = 1.$
- $3. \quad zxy = 1.$
- 4. zyx = 1.
- 89. Which of the following cannot be the class equation of a group of order 10?

$$+1$$
. $1+1+1+2+5=10$.

- 2. 1+2+3+4=10.
- -3. 1+2+2+5=10.
- $4. \quad 1+1+2+2+2+2=10.$
- 90. Consider the following subsets of the complex plane:

$$\Omega_1 = \begin{cases} C \in \mathbb{C} : \begin{bmatrix} 1 & C \\ \bar{C} & 1 \end{bmatrix} \end{cases}$$

is non-negative definite

(or equivalently positive semi – definite)

$$\Omega_2 = \left\{ C \epsilon \mathbb{C} : \begin{bmatrix} 1 & C & C \\ \bar{C} & 1 & C \\ \bar{C} & \bar{C} & 1 \end{bmatrix} \right.$$

CMS

Email: cmscsirnet@gmail.com CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

+9'9447247329

15

is non negative definite

(or equivalently positive semi - definite)

Let $\overline{D} = \{z \in \mathbb{C} \mid |z| \le 1\}$. Ther

- 1. $\Omega_1 = \overline{D}, \Omega_2 = \overline{D}$.
- 2. $\Omega_1 \neq \overline{D}, \Omega_2 = \overline{D}$. 3. $\Omega_1 = \overline{D}, \Omega_2 \neq \overline{D}$.
- 4. $\Omega_1 \neq \overline{D} \Omega_2 \neq \overline{D}$

91. Let P be a continuous function on \mathbb{R} and W the Wronskian of two linearly independent solutions y_1 and y_2 of the

$$\frac{d^2y}{dx^2} + (1+x^2)\frac{dy}{dx} + P(x)y = 0, x \in \mathbb{R}.$$
Let $W(1) = a$, $W(2) = b$ and $W(3) = c$, then

- 1. a < 0 and b > 0
- 2. a < b < c or a > b > c
- $\frac{a}{|a|} = \frac{b}{|b|} = \frac{c}{|c|}$
- 0 < a < b and b > c > 0
- 92. The critical point of the system

$$\frac{dx}{dt} = -4x - y, \quad \frac{dy}{dt} = x - 2y \text{ is an}$$

- 1. asymptotically stable node
- unstable node
- asymptotically stable spiral
- unstable spiral
- 93. The extremal of the functional $\int_0^{\alpha} (y'^2 - y^2) dx$ that passes through (0,0) and $(\alpha,0)$ has a
 - 1. weak minimum if $\alpha < \pi$
 - 2. strong minimum if $\alpha < \pi$

- weak minimum if $\alpha > \pi$
- strong minimum if $\alpha > \pi$
- 94. For the initial value problem

$$\frac{dy}{dx} = y^2 + \cos^2 x \,, \qquad x > 0$$

$$y(0)=0,$$

The largest interval of existence of the solution predicted by Picard's theorem s:

- [0, 1]
- [0, 1/2]
- [0, 1/3]
- [0, 1/4]
- Which of the following are complete integrals of the partial differential equation $pqx + yq^2 = 1?$

 - 3. $z^2 = 4(ax + y) + b$
 - $(z-b)^2 = 4(ax+y)$
- The function

$$G(x,\zeta) = \begin{cases} a + b \log \zeta, & 0 < x \le \zeta \\ c + d \log x, & \zeta \le x \le 1 \end{cases}$$

is a Green's function for xy'' + y' = 0, subject to y being bounded as $x \to 0$ and y(1) = y'(1), if

- 1. a = 1, b = 1, c = 1, d = 1
- 2. a = 1, b = 0, c = 1, d = 0
- 3. a = 0, b = 1, c = 0, d = 1
- 4. a = 0, b = 0, c = 0, d = 0
- The second order partial differential equation $u_{xx} + x u_{yy} = 0$ is
 - elliptic for x > 0
 - 2. hyperbolic for x > 0
 - elliptic for x < 03.
 - hyperbolic for x < 0

+919447247329

16

- 98. For an arbitrary continuously differentiable function f, which of the following is a general solution of $z(px - qy) = y^2 - x^2$

 - 1. $x^2 + y^2 + z^2 = f(xy)$ 2. $(x + y)^2 + z^2 = f(xy)$ 3. $x^2 + y^2 + z^2 = f(y x)$ 4. $x^2 + y^2 + z^2 = f((x + y)^2 + z^2)$
- A particle of mass m is constrained to move on the surface of a cylinler $x^2 + y^2 = a^2$ under the influence of a force directed towards the origin and poportional to the distance of the particle fron the origin. Then
 - the angular momentum about z-axis is constant
 - the angular momentum about z-axis is not constant
 - the motion is simple harmonic in zdirection
 - the motion is not simple harmonic in z-direction
- 00. The extremal of the functional $I = \int_0^{x_1} y^2 (y')^2 dx$ that pisses through (0,0) and (x_1,y_1) is
 - a constant function
 - a linear function of x
 - part of a parabola
 - part of an ellipse
- 101. The following numerical integration formula is exact for all polynomials of degree less than or equal to 3
 - Trapezoidal rule
 - Simpson's $\frac{1}{2}rd$ rule
 - Simpson's 3 th rule
 - Gauss-Legendre 2 point formula

102. For the integral equation y(x) = 1 +

 $x^3 + \int_0^x K(x,t)y(t)dt$ with kernel

 $K(x,t) = 2^{x-t}$, the iterated kernel $K_3(x,t)$

UNIT

- 103. Let X and Y be random variables with joint cumulative distribution function F(x, y). Then which of the following conditions are sufficient for $(x, y) \in \mathbb{R}^2$ to be a point of continuity of F?
 - 1. P(X = x, Y = y) = 0.
 - 2. Either P(X = x) = 0or P(Y = y) = 0.
 - 3. P(X = x) = 0 and P(Y = y) = 0.
 - 4. $P(X = x, Y \le y) = 0$ and $P(X \le x, Y = y) = 0.$
- 104. Suppose X has density

 $f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0$ where $\theta > 0$ is unknown. Define Y as follows: $Y = k \text{ if } k \le X < k + 1, \quad k = 0, 1, 2, \dots$

- Then the distribution of Y is
 - normal. Poisson.
- binomial.

geometric.

105. Suppose X has density $f(x \mid \theta)$ where θ is 0 or 1. Also, f(x|0) = 1 if 0 < x < 1, and 0 otherwise,

 $f(x|1) = \frac{1}{2\sqrt{x}}$ if 0 < x < 1 and 0 otherwise.

CMS

+919447247329

17

To test H_0 : $\theta = 0$ versus H_1 : $\theta = 1$ at level α , $0 < \alpha < 1$, the Most Powerful test

- 1. rejects H_0 if $X > 1 \alpha$.
- 2. rejects H_0 if $X < \alpha$.
- 3. rejects H_0 if $X < \sqrt{\alpha}$.
- 4. has power $\sqrt{\alpha}$.
- distribution such that $X \mid Y = y \sim \text{Binomial}$ (y, 0.5) and $Y \sim \text{Poisson}(\lambda), \lambda > 0$, where λ is an unknown parameter. Let T = T(X, Y) be any unbiased estimator of λ . Then
 - 1. $Var(T) \leq Var(Y)$ for all λ .
 - 2. $Var(T) \ge Var(Y)$ for all λ .
 - 3. $Var(T) \ge \lambda$ for all λ .
 - 4. Var(T) = Var(Y) for all λ .
- Consider a sample of size one, say X, from a population with pdf

$$f_{\theta}(x) = \frac{2}{\theta^2}(x - \theta)$$
 $\theta \le x \le 2\theta, \theta > 0$

= 0 otherwise Which of the following is/are confidence interval(s) for θ with confidence coefficient $1 - \alpha$?

- 1. $\left[\frac{x}{2}, \frac{x}{1+\sqrt{\alpha}}\right]$.
- $2. \quad \left[\frac{x}{1+\sqrt{1-\frac{\alpha}{2}}}, \frac{x}{1+\sqrt{\frac{\alpha}{2}}}\right].$
- 3. $\left[\frac{X}{1+\sqrt{1-\alpha}}, X\right]$.
- 4. $\frac{x}{1+\sqrt{1-\frac{\alpha}{4}}}, \frac{x}{1+\sqrt{\frac{3\alpha}{4}}}$
- 108. Consider a Markov Chain with state space $S = \{0, 1, 2, 3\}$ and with transition probability matrix P given by

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2/3 & 0 & 1/3 & 0 \\ 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Then

- 1. I is a recurrent state.
- 2. 0 is a recurrent state.
- 3 is a recurrent state.
- 4. 2 is a recurrent state.
- Let X and Y be independent normal random variables with mean 0 and variance 1. Let the characteristic function of XY be denoted by φ. Then
 - 1. $\varphi(2) = 1/2$.
 - 2. φ is an even function.
 - 3. $\varphi(t)\varphi\left(\frac{1}{t}\right) = |t| \text{ for all } t \neq 0.$
 - 4. $\varphi(t) = E(e^{-t^2Y^2/2})$
- 11). Let X_1 and X_2 be independent and identically distributed normal random variables with mean 0 and variance 1. Let U_1 and U_2 be independent and identically distributed U(0,1) random variables, independent of X_1, X_2 . Define

$$Z = \frac{X_1 U_1 + X_2 U_2}{\sqrt{U_1^2 + U_2^2}}.$$
 Then,

- $1. \quad E(Z) = 0.$
- $2. \quad Var(Z) = 1.$
- 3. Z is standard Cauchy.
- 4. $Z \sim N(0,1)$
- 11. Consider the pdf

 $f(x; \theta, \sigma) = \frac{0.9}{\sigma} \varphi\left(\frac{x-\theta}{\sigma}\right) + 0.1 \varphi(x-\theta),$ where $-\infty < \theta < \infty$ and $\sigma > 0$ are unknown parameters and φ denotes the pdf of N(0,1). Let X_1, X_2, \dots, X_n be a random sample from this probability distribution. Then which of the following is (are) correct?

S/15 CRS/2015-4CE-2

- 1. This model is not parametric.
- Method of moments estimators for θ and σ exist.
- 3. An unbiased estimator of θ exists.
- 4. Consistent estimators of θ do, not exist.
- 112. Suppose X_1, X_2, \cdots are independent random variables. Assume that X_1, X_3, \cdots are identically distributed with mean μ_1 and variance σ_1^2 , while X_2, X_4, \cdots are identically distributed with mean μ_2 variance σ_2^2 . Let $S_n = X_1 + X_2 + \cdots + X_n$. Then $\frac{S_n a_n}{b_n}$ converges in distribution to N(0,1) if

1.
$$a_n = \frac{n(\mu_1 + \mu_2)}{2}$$
 and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$

2.
$$a_n = \frac{n(\mu_1 + \mu_2)}{2}$$
 and $b_n = \frac{n(\sigma_1 + \sigma_2)}{2}$

3.
$$a_n = n(\mu_1 + \mu_2)$$
 and $b_n = \sqrt{n} \frac{(\sigma_1 + \sigma_2)}{2}$

4.
$$a_n = n(\mu_1 + \mu_2)$$
 and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$

- 113. Consider the linear model $Y \sim N_n(X\beta, \sigma^2 I)$, where X is a $n \times (k+1)$ matrix of rank k+1 < n. Let β and $\hat{\sigma}^2$ be the maximum likelihood estimators of β and σ^2 respectively. Then which of the following statements are true?
 - 1. $cov(\hat{\beta}) = \sigma^2 X' X$
 - 2. $\hat{\beta}$ and $\hat{\sigma}^2$ are independently distributed
 - 3. $\hat{\sigma}^2$ is sufficient for σ^2
 - 4. $\hat{\sigma}^2 = Y'AY$ where A is a suitable matrix of rank (n k 1).
- 114. Let Y_1, Y_2, Y_3, Y_4 be i.i.d standard normal variables. Which of the following has Wishart distribution with 2 d.f.?

1.
$$\begin{bmatrix} Y_1^2 + Y_2^2 & Y_2^2 + Y_3^2 \\ Y_2^2 + Y_3^2 & Y_3^2 + Y_4^2 \end{bmatrix}$$

$$2. \quad \begin{bmatrix} Y_1^2 & Y_2^2 \\ Y_3^2 & Y_4^2 \end{bmatrix}.$$

3.
$$\begin{bmatrix} Y_1^2 + Y_2^2 & 0 \\ 0 & Y_3^2 + Y_4^2 \end{bmatrix}$$

4.
$$\begin{bmatrix} Y_1^2 + Y_2^2 & Y_1Y_3 + Y_2Y_4 \\ Y_1Y_2 + Y_2Y_4 & Y_2^2 + Y_2^2 \end{bmatrix}$$

115. To check whether a premium version of petrol gives better fuel efficiency, a random sample of 10 cars of a single model were tested with both premium and standard petrol. Let the mileages obtained be denoted by $(X_1, Y_1), \dots, (X_{10}, Y_{10}),$ where X_i denotes the mileage from standard and Y_i from the premium for the i^{th} car. We want to test H_0 : There is no difference in fuel efficiency between the two versions of petrol

Versus

H₁: Premium petrol gives better fuel efficiency

Let $D_i = Y_i - X_i$, $\overline{D} = \overline{Y} - \overline{X}$, $S_i =$ Rank of D_i when $|D_i|$ are ordered. It is felt that fuel efficiency measurements are not normally distributed and hence a nonparametric test is to be proposed. Then which of the following can be considered suitable statistics for this purpose?

- 1. $\bar{Y} \bar{X}$.
- 2. Numbers of positive D's.
- 3. Sum of S_i corresponding to positive D_i .
- 4. $\sqrt{\Sigma(D_i \hat{U})^2}$
- 116. Let $\Sigma = ((\sigma_{ij}))$ be an $n \times n$ symmetric and positive definite matrix such that $\sigma_{ij} \neq 0$ for all i, j. Which of the following matrices will always be the covariance matrix of a multivariate normal randon vector?

- \sum . The matrix with the (ij) th element σ_{ij}^2 for each i, j.
- 3. The matrix with (ij)th element $\frac{1}{\pi i}$ for each i, j.
- 17. Let X(t) = number of customers in the system at time t in an M/M/C queueing model, with C = 3, arrival rate $\lambda > 0$ and service rate $\mu > 0$. Which of the following is/are true?
 - $\{X(t)\}\$ is a birth and death process with constant birth and death rates.
 - 2. If $\{X(t)\}$ has a stationary distribution, then $\lambda < 3\mu$.
 - If $\lambda < 3\mu$, then the stationary distribution is a geometric distribution with parameter $\frac{\Lambda}{3\mu}$
 - The number of customers undergoing service at time t is min $\{X(t), 3\}$.
- 8. Consider the linear model

$$Y_1 = \mu_1 - \mu_2 + \epsilon_1$$

$$Y_2 = \mu_2 - \mu_3 + \epsilon_2$$

$$Y_{n-1} = \mu_{n-1} - \mu_n + \epsilon_{n-1}$$

$$Y_n = \mu_n - \mu_1 + \epsilon_n$$

where μ_1, \dots, μ_n are unknown parameters and $\epsilon_1, \dots, \epsilon_n$ are uncorrelated with mean 0 and common variance. Let Y be the column vector $(Y_1, Y_2, \dots, Y_n)'$ and $\vec{Y} =$ $\frac{1}{n}\sum_{i=1}^{n} Y_i$. Which of the following are correct?

- 1. If E(c'Y) = 0, then all elements of c'are equal.
- The best linear unbiased estimator of $\mu_1 - \mu_3$ is $Y_1 + Y_2$.
- The best linear unbiased estimator of $\mu_2 - \mu_3$ is $Y_2 - \bar{Y}$.
- 4. All linear functions $d_1\mu_1 + \cdots + d_n\mu_n$ are estimable.

119. Consider random $(X_1, Y_1), \dots, (X_n, Y_n)$ from the bivariate normal distribution with $E(X_i) = \mu =$ $E(Y_i)$, $Var(X_i) = \sigma^2 = Var(Y_i)$ and $Cov(X_i, Y_i) = \rho \sigma^2$ for all i. Let $\hat{\mu}, \hat{\sigma}^2$ and $\hat{\rho}$ denote the maximum likelikhood estimators of μ, σ^2 and ρ respectively.

+919447247329

 $S_X^2 = \sum_{i=1}^n (X_i - \bar{X})^2, \ S_Y^2 = \sum_{i=1}^n (Y_i)^2$

$$S_{XY} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

Then

- 1. $X_1 Y_1$ and $X_1 + Y_1$ are independent. 2. $\hat{\mu} = \frac{1}{2}(\bar{X} + \bar{Y}), \hat{\sigma}^2 = \frac{1}{2n}(S_X^2 + S_Y^2), \hat{\rho} = \frac{2S_X}{S_X^2 + S_Y^2}$
- 3. $\hat{\sigma}^2(1+\hat{\rho}) = \frac{1}{2n} (S_X^2 + S_Y^2 + 2S_{XY}).$ 4. $\hat{\tau}^2(1-\hat{\rho}) = \frac{1}{2n} (S_X^2 + S_Y^2 2S_{XY}).$
- **120.** Let Y_1, Y_2, Y_3 be uncorrelated observations with common variance σ^2 and expectations given by $E(Y_1) = \theta_0 + \theta_1$, $E(Y_2) = \theta_0 + \theta_2, \ E(Y_3) = \theta_0 + \theta_3,$ where $\theta_i's$ are unknown parameters. In the framework of the linear model which of the following statement(s) is (are) true?
 - 1. Each of θ_0 , θ_1 , θ_2 and θ_3 is individually estimable.
 - $\sum_{i=0}^{3} \theta_i$ is estimable.
 - $\theta_1 \theta_2$, $\theta_1 \theta_3$ and $\theta_2 \theta_3$ are each estimable.
 - The error sum of squares is zero

SINCE 2008

Phone: 8113887329, 8075791772 Email: cmscsirnet@gmail.com

CMS CENTER FOR MATHEMATICS AND STATICS TRIVANDRUM

+919447247329

Qn. Set C	Key	
1	1	
2	2	
3 4 5	3	
4	4	
5	4	
6	2	
7	4	
8	1	
9	3	
10	2	
11	4	
12	4	
13	4	
14	2	
15	4	
16	2	
17	1	
18	1 1	
19	1	
20	2	
21	1	
22	3 3	
23	3	
24	2	
25	3	
26	2	
27	3	
28	1	
29	4	
30	1	
31	1	
32	4	
33	4	
34	3	
35	2	
36	2	
37	2	
38	3	
39	3	
40	3	
41	4	

		1
Qn. Set C	Key	
42	3	
43	3	
44	3	
45	.3	
46	3	
47	2	
48	2	To.
49	1	13
50	2	
51	2	
52	1	
53	- 1	
54	2	
55	1	
56	2 ,	
57	3	1
58	4	
59	1	1
60	3	
61	1,3,4	
62	1,4	
63	1,2	
64	1,2	
65	3,4	
66	1,2	
67	1,2	
68	1,2	
69	1,3,4	
70	3,4	
71	2,4	
72	3,4	****
73	1,4	155
74	1,3,4	200
75	2,3	
76	2,3	
77	1	0.0
78	2,4	No
79	1,2,3,4	
80	1,2,4	
81	2,4	
82	1,2,3	
	, -,-	I

Qn. Set C	Key	
83	1,3	
84	1,2,3	
85	2,4	
86	1,2,3,4	
87	2,3	
88	1,3	
89	1,2,4	
90	3	
91	2,3	
92	1:	
.93	1,2	
94	2	
95	1,4	
96	1	
97	1,4	
98	1,2,4	
99	1,3	
100	3	
101	2,3,4	
102	3	
103	3,4	
104	4	
105	2,4	
106	2,3	
107	1,2,3,4	
108	2,4	
109	2,4	
110	1,2,4	
111	2,3	
112	1	
113	2,4	
114	4	
115	2,3	
116	1,2,4	
117	2,4	
118	1,3	
119	1,2,3,4	
120	3,4	