Ordinary Differential Equations:

CENTER FOR MATHEMATICS AND STATISTICS, TRIVANDRUM

1. Consider inital value problem (IVP)

$$
\frac{dy}{dx} = x^2|y|, \quad y(0) = 0, \quad x \in (-\infty, \infty).
$$

Let $R: \{(x, y); |x| \le a, |y| \le b, a > 0, b\}$ 0} be a rectangle. Then

- (a) $\frac{\partial f}{\partial y}$ fails to exists at many points in the rectangle R, where $f(x, y) = x^2|y|$.
- (b) There exists more than one solution.
- (c) $f(x, y) = x^2|y|$ is Lipschitz continuous in the rectangle R.
- (d) The IVP has unique solution in a neighborhood of 0.
- 2. Consider the differential equation

$$
(P): \qquad \frac{dy(x)}{dx} = |y(x)|, \quad x \in (-\infty, \infty).
$$

Then

- CENTER FOR MATHEMATICS AND STATISTICS TRIVANDRUM (a) If $y(0) = y_0$, for any $y_0 > 0$, there is unique solution.
- (b) every solution of (P) is of the form $y =$ $ce^x, c \geq 0.$
- (c) If $y(0) = y_0$, for some $y_0 < 0$, there is no solution.
- (d) there exist a solution $y(x)$ such that $y(x) < 0$, for all x.

3. Consider the initial value problem (IVP)

$$
y'(t) = e^{-t^2}y(t), \quad y(e) = 0.5,
$$

Then, the IVI

- (a) has infinitely many solutions
- (b) has a solution which is not defined at some $t \in \mathbb{R}$
- (c) has a unique solution in R
- (d) has no solution
- 4. Let $y : \mathbb{R} \to \mathbb{R}$ be differentiable and satisfy the ODE:

$$
\frac{dy}{dx} = f(y), \quad x \in \mathbb{R}
$$

$$
y(0) = y(1) = 0
$$

where $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function. Then

(a)
$$
y(x) = 0
$$
 if and only if $x \in \{0, 1\}$

- (b) y is bounded
- (c) y is strictly increasing
- (d) $\frac{dy}{dx}$ is unbounded
- 5. Consider the solution of the ordinary differential equation

$$
y'(t) = -y^3 + y^2 + 2y
$$
, subject to
 $y(0) = y_0 \in (0, 2)$.

Then $\lim_{t\to\infty} y(t)$ belongs to

 $(a) \{-1,0\}$ $(b) \{-1,2\}$ $(c) \{0,2\}$ (d) $\{0, \infty\}$

6. If the solution to

$$
\begin{cases} \frac{dy}{dx} = y^2 + x^2, & x > 0\\ y(0) = 2 \end{cases}
$$

exists in the interval $[0, L_0)$ and the maximal interval of exixtence of

$$
\begin{cases}\n\frac{dz}{dx} = z^2, & x > 0 \\
z(0) = 1\n\end{cases}
$$

is $[0, L_1)$, then which of the following statements are correct?

- (a) $L_1 = 1$, $L_0 > 1$ (b) $L_1 = 1, \quad L_0 \leq 1$ (c) $L_1 < 2$, $L_0 \leq 1$ (d) $L_1 > 2$, $L_0 < 1$
- CENTER FOR MATHEMATICS AND STATISTICS TRIVANDRUM 7. Ler $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function such that $f(x) = 0$ if and only if $x = \pm n^2$ where $n \in N$. Consider the initial value problem:

 $y'(t) = f(y(t)), \quad y(0) = y_0.$

Then which of the following are true?

- (a) y is a monotone function for all $y_0 \in \mathbb{R}$
- (b) For any $y_0 \in \mathbb{R}$, there exists $M_{y_0} > 0$ such that $|y(t)| \leq M_{y_0}$ for all $t \in \mathbb{R}$
- (c) there exists $y_0 \in \mathbb{R}$, such that the corresponding y is unbounded
- (d) sup $\sup_{t,s\in\mathbb{R}}|y(t) - y(s)| = 2n + 1$ if $y_0 \in$ $(n^2, (n+1)^2), \quad n \ge 1$
- 8. Consider the initial value problem $\frac{dy}{dx}$ = $x^2 + y^2$, $y(0) = 1$; $0 \le x \le 1$. Then which of the following statements are true?
	- (a) There exists a unique solution in $[0, \frac{\pi}{4}]$ $\frac{\pi}{4}]$
	- (b) Every solution is bounded in $[0, \frac{\pi}{4}]$ $\frac{\pi}{4}]$
	- (c) The solution exhibits a singularity at some point in [0, 1]
	- (d) The solution becomes unbounded in some subinterval of $\left[\frac{\pi}{4}\right]$ $\frac{\pi}{4}, 1]$
- 9. Consider the initial value problem

$$
y'(t) = f(y(t)),
$$
 $y(0) = a \in \mathbb{R},$
where $f : \mathbb{R} \to \mathbb{R}.$

Which of the following statements are necessarily true ?

- (a) There exists a continuous function f : $\mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$ such that the above problem does not have a solution in any neighbourhood of 0.
- (b) The problem has a unique solution for every $a \in \mathbb{R}$ when f is Lipschitz continuous.
- (c) When f is twice continuously differentiable, the maximal interval of existence for the above initial value problem is R.
- (d) The maximal interval of existence for the problem is $\mathbb R$ when f is bounded and continuously differentiable.
- 10. Let *y* be a solution of $y' = e^{-y^2} 1$ on [0, 1] which satisfies $y(0) = 0$. Then
	- (a) y is strictly increasing for $x > 0$
	- (b) y is strictly decreasing for $x > 0$
	- (c) $y(x) \neq 0$ for some $x > 0$.
	- (d) \boldsymbol{v} has infinitely many zeros.