Ordinary Differential Equations:

CENTER FOR MATHEMATICS AND STATISTICS, TRIVANDRUM

1. Consider initial value problem (IVP)

$$\frac{dy}{dx} = x^2 |y|, \quad y(0) = 0, \quad x \in (-\infty, \infty).$$

Let $R : \{(x,y); |x| \le a, |y| \le b, a > 0, b > 0\}$ be a rectangle. Then

- (a) $\frac{\partial f}{\partial y}$ fails to exists at many points in the rectangle R, where $f(x, y) = x^2 |y|$.
- (b) There exists more than one solution.
- (c) $f(x,y) = x^2 |y|$ is Lipschitz continuous in the rectangle R.
- (d) The IVP has unique solution in a neighborhood of 0.
- 2. Consider the differential equation

$$(P): \qquad \frac{dy(x)}{dx} = |y(x)|, \quad x \in (-\infty)$$

Then

- (a) If $y(0) = y_0$, for any $y_0 > 0$, there is unique solution.
- (b) every solution of (P) is of the form $y = ce^x, c \ge 0$.
- (c) If $y(0) = y_0$, for some $y_0 < 0$, there is no solution.
- (d) there exist a solution y(x) such that y(x) < 0, for all x.

3. Consider the initial value problem (IVP)

$$y'(t) = e^{-t^2}y(t), \quad y(e) = 0.5,$$

Then, the IVP

- (a) has infinitely many solutions
- (b) has a solution which is not defined at some $t \in \mathbb{R}$
- (c) has a unique solution in \mathbb{R}
- (d) has no solution
- 4. Let $y : \mathbb{R} \to \mathbb{R}$ be differentiable and satisfy the ODE:

$$\begin{aligned} \frac{dy}{dx} &= f(y), \quad x \in \mathbb{R} \\ y(0) &= y(1) = 0 \end{aligned}$$

where $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function. Then

(a)
$$y(x) = 0$$
 if and only if $x \in \{0, 1\}$

- (b) y is bounded
- (c) y is strictly increasing
- (d) $\frac{dy}{dx}$ is unbounded
- 5. Consider the solution of the ordinary differential equation

$$y'(t) = -y^3 + y^2 + 2y$$
, subject to
 $y(0) = y_0 \in (0, 2).$

Then $\lim_{t\to\infty} y(t)$ belongs to

(a) $\{-1, 0\}$ (b) $\{-1, 2\}$ (c) $\{0, 2\}$ (d) $\{0, \infty\}$ 6. If the solution to

$$\begin{cases} \frac{dy}{dx} = y^2 + x^2, \qquad x > 0\\ y(0) = 2 \end{cases}$$

exists in the interval $[0, L_0)$ and the maximal interval of existence of

$$\begin{cases} \frac{dz}{dx} = z^2, & x > 0\\ z(0) = 1 \end{cases}$$

is $[0, L_1)$, then which of the following statements are correct?

- (a) $L_1 = 1$, $L_0 > 1$ (b) $L_1 = 1$, $L_0 \le 1$ (c) $L_1 < 2$, $L_0 \le 1$ (d) $L_1 > 2$, $L_0 < 1$
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function such that f(x) = 0 if and only if $x = \pm n^2$ where $n \in N$. Consider the initial value problem:

 $y'(t) = f(y(t)), \quad y(0) = y_0.$

Then which of the following are true?

- (a) y is a monotone function for all $y_0 \in \mathbb{R}$
- (b) For any $y_0 \in \mathbb{R}$, there exists $M_{y_0} > 0$ such that $|y(t)| \le M_{y_0}$ for all $t \in \mathbb{R}$
- (c) there exists $y_0 \in \mathbb{R}$, such that the corresponding y is unbounded
- (d) $\sup_{\substack{t,s \in \mathbb{R} \\ (n^2, (n+1)^2), n \ge 1}} |y(t) y(s)| = 2n + 1 \text{ if } y_0 \in$

- 8. Consider the initial value problem $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1; $0 \le x \le 1$. Then which of the following statements are true?
 - (a) There exists a unique solution in $[0, \frac{\pi}{4}]$
 - (b) Every solution is bounded in $[0, \frac{\pi}{4}]$
 - (c) The solution exhibits a singularity at some point in [0, 1]
 - (d) The solution becomes unbounded in some subinterval of $\left[\frac{\pi}{4}, 1\right]$
- 9. Consider the initial value problem

$$y'(t) = f(y(t)), \quad y(0) = a \in \mathbb{R},$$

where $f : \mathbb{R} \to \mathbb{R}.$

Which of the following statements are necessarily true ?

- (a) There exists a continuous function f:
 ℝ → ℝ and a ∈ ℝ such that the above problem does not have a solution in any neighbourhood of 0.
- (b) The problem has a unique solution for every $a \in \mathbb{R}$ when f is Lipschitz continuous.
- (c) When f is twice continuously differentiable, the maximal interval of existence for the above initial value problem is \mathbb{R} .
- (d) The maximal interval of existence for the problem is \mathbb{R} when f is bounded and continuously differentiable.
- 10. Let y be a solution of $y' = e^{-y^2} 1$ on [0, 1] which satisfies y(0) = 0. Then
 - (a) y is strictly increasing for x > 0
 - (b) y is strictly decreasing for x > 0
 - (c) $y(x) \neq 0$ for some x > 0.
 - (d) y has infinitely many zeros.