Ordinary Differential Equations:

CENTER FOR MATHEMATICS AND STATISTICS, TRIVANDRUM

1. Consider the initial value problem (IVP)

$$y'(t) = e^{-t^2}y(t), \quad y(e) = 0.5,$$

- . Then, the IVP
- (a) has infinitely many solutions
- (b) has a solution which is not defined at some $t \in \mathbb{R}$
- (c) has a unique solution in \mathbb{R}
- (d) has no solution
- 2. Let $y_1(x)$ and $y_2(x)$ be the solutions of the differential equation $\frac{dy}{dx} = y + 17$ with initial conditions $y_1(0) = 0, y_2(0) = 1$. Then
 - (a) y_1 and y_2 will never intersect.
 - (b) y_1 and y_2 will intersect x = 17.
 - (c) y_1 and y_2 will intersect x = e
 - (d) y_1 and y_2 will intersect x = 1
- 3. Consider the differential equation

$$\frac{dy}{dx} = y^2, \qquad (x,y) \in \mathbb{R} \times \mathbb{R}.$$

Then

- (a) all solutions of the differential equations are defined on $(-\infty, \infty)$.
- (b) no solutions of the differential equations are defined on $(-\infty, \infty)$.
- (c) the solution of the differential equations satisfying the initial condition $y(x_0) = y_0, y_0 > 0$, is defined on $(-\infty, x_0 + \frac{1}{y_0})$.
- (d) the solution of the differential equations satisfying the initial condition $y(x_0) = y_0, y_0 > 0$, is defined on $(x_0 - \frac{1}{y_0}, \infty)$.

- 4. The initial value problem $\dot{x}(t) = 3x^{2/3}$, x(0) = 0, in an interval around t = 0, has
 - (a) no solution
 - (b) a unique solution
 - (c) finitely many linearly independent solutions
 - (d) infinitely many linearly independent solutions
- 5. Consider the equation

$$\frac{dy}{dt} = (1 + f^2(t))y(t), \quad y(0) = 1. \quad t \ge 0,$$

where f is bounded continuous functions on $[0,\infty)$. Then

- (a) This equation admits a unique solution y(t) and further $\lim_{t\to\infty} y(t)$ exists and is finite.
- (b) This equation admits two linearly independent solutions.
- (c) This equation admits a bounded solution for which $\lim_{t\to\infty} y(t)$ does not exist.
- (d) This equation admits a unique solution y(t) and further, $\lim_{t\to\infty} y(t) = \infty$.
- 6. Let $y: \mathbb{R} \to \mathbb{R}$ satisfy the initial value problem

$$y'(t) = 1 - y^2(t), \quad y(0) = 0, \quad t \in \mathbb{R}.$$

Then

- (a) $y(t_1) = 1$ for some $t_1 \in \mathbb{R}$.
- (b) y(t) > -1 for all $t \in \mathbb{R}$.
- (c) y is strictly increasing in \mathbb{R} .
- (d) y is increasing in (0, 1) and decreasing in $(1, \infty)$.

7. The initial value problem $y' = 2\sqrt{y}, \quad y(0) = a$, has

=

- (a) a unique solution if a < 0
- (b) no solution if a > 0
- (c) infinitely many solutions if a = 0
- (d) a unique solution if $a \ge 0$
- 8. Consider the ODE on y'(x) = f(y(x)). If f is an even function and y is an odd function, then
 - (a) -y(-x) is also a solution.
 - (b) y(-x) is also a solution.
 - (c) -y(x) is also a solution.
 - (d) y(x)y(-x) is also a solution.
- 9. Consider the solution of the ordinary differential equation

$$y'(t) = -y^3 + y^2 + 2y$$
, subject to
 $y(0) = y_0 \in (0, 2).$

Then
$$\lim_{t\to\infty} y(t)$$
 belongs to

- (a) $\{-1,0\}$
- (b) $\{-1,2\}$
- (c) $\{0,2\}$
- (d) $\{0, \infty\}$

10. Consider the ordinary differential equation

$$y' = y(y-1)(y-2).$$

Which of the following statements is true?

- (a) If y(0) = 0.5, then y is decreasing
- (b) If y(0) = 1.2, then y is increasing
- (c) If y(0) = 2.5, then y is unbounded
- (d) If y(0) < 0, then y is bounded below

11. Assume that $a : [0, \infty) \to \mathbb{R}$ is a continuus function. Consider the ordinary differential equation

 $y'(x) = a(x)y(x), \quad x > 0, \quad y(0) = y_0 \neq 0.$

which of the following statements are true?

- (a) If $\int_0^\infty |a(x)| dx < \infty$, then y is bounded
- (b) If $\int_{0}^{\infty} |a(x)| dx < \infty$, then $\lim_{x \to \infty} y(x)$ exists
- (c) If $\lim_{x\to\infty} a(x) = 1$, then $\lim_{x\to\infty} |y(x)| = \infty$
- (d) If $\lim_{x\to\infty} a(x) = 1$, then y is monotone